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Cyclizations Wherein an Epoxide Acts as the Source of Initiation and
Termination Steps. Evidence for an Early Transition State in Biomimetic
Epoxide Cyclizations
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Abstract: Epoxides which can competitively cyclize to either a double bond or aromatic group undergo novel
bicyclizations where an epoxide is the source of initiating and terminating groups. The results suggest that
biomimetic epoxide cyclizations involve early transition states.

Polyene cyclizations using epoxides as cyclization initiators (epoxy-ene cyclizations) are important
because these reactions are related to those involving the biosynthesis of steroids!+2 and other important natural
products.!:2 These types of reactions have been reviewed recently.2 A key point of discussion is whether the
cyclizations are concerted or stepwise. 2"

Polyene cyclizations where a hydroxyl group serves as the terminating group are rare?#: those where
an epoxide serves as the initiator and a hydroxy! group serves as the terminator group are even rarer.% We
report epoxide bicyclizations where a single epoxide group is the source of both initiation and termination
steps. The cyclizations form two rings in a clearly demonstrated stepwise fashion and the process provides
evidence that biomimetic cyclizations involve an early transition state.

In earlier work® to determine the relative facility of epoxy-ene and epoxy-arene cyclizations, 1 was
shown to cyclize to the aromatic position to stereoselectively give 2. We decided to see if methy] substitution
on the double bond (to give 3) would cause the cyclization pathway to switch to the double bond since
cyclization in this case would occur via a tertiary cation. Instead of predominant monocyclization to the double
bond, we observed mainly a bicycliztion product wherein both functional groups reacted to give 4 (the minor
product § did form by the former route).
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There were two apparent pathways which could lead to 4. One involved initial protonation to the double bond
(pathway B) followed by oxygen bridging and aromatic cyclization.5 Alternatively, the aromatic cyclization
could occur followed by cyclization of the resulting alcohol to the double bond (pathway A). To test which
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pathway occurred, we followed the reaction by proton NMR. The aromatic region clearly changed prior to
any double bond changes, and this supported pathway A. We also prepared 6 independently’ and subjected it
to the reaction conditions. It quickly converted in >90% yield to 4, also suggesting this reaction is a stepwise
process occurring through pathway A. We also could detect 6 in significant quantities if we used the weak
Lewis acid SnCl or short reaction times using small quantities of BF3-OEt, and short reaction times. The
conversion of 6 to 4 using a relatively mild Lewis acid is noteworthy since cyclizations of this type normally
utilize strong protonic acids.2# We suspect that some biomimetic cyclizations may have involved this type of
reaction, but it has not been demonstrated. To see if an early example involved this process, we repeated
reaction 332 and then isolated and re-subjected product 8 to the reaction conditions to see if product 9
resulted. Under the reaction conditions, it did not form to any significant extent. Therefore, the hydroxyl
group needs to be suitably positioned to cyclize to a substituted double bond under these mild conditions.
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To be sure that this reaction was not an isolated example, we treated 11 with 0.4 equivalents of
BF;+OEt, and found another bicyclization product (12) that appears to form by the same pathway. Products

12 and 13 account for 93% of the volatile product distribution. 10 To suppose that the five-membered ring of
12 forms by direct epoxide cyclization is not consistent with the paucity of examples of epoxy-ene cyclizations
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that form this ring size or the structure of the product expected to occur by this route.
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The fact that initial double bond cyclization does not predominate is surprising because this pathway
could lead to a tertiary cation. The most direct explanation of this observation is that the transition state is early
and therefore carbocation stability is not as important as expected. Since this reaction pathway is very similar
to that of many biomimetic cyclizations (e.g. equation 3), this supports the idea that biomimetic cyclizations
involve early transition states.

In a typical reaction, 71 mg (0.33 mmoles) of 31! in 2 mL of dry methylene chloride was added
dropwise under N; to 9 L (0.073 mmoles) of BF3°OE, in 15 mL of dry methylene chloride. The solution
was stirred at room temperature for 3.5 hr. and then it was washed with 5% NaHCO; and saturated NaCl and
dried MgSO,). The products were purified directly by semipreparative HPLC using a 92:8 mixture of
hexane:ethyl acetate (trace of EtOH). The yield of the reaction was determined by external standard using 4
that had been prepared independentdy. Compound 11 was treated similarly only the reaction time was 50 min.

and yields were of isolated, pure compounds. Subsequent reactions were followed by GC and the existence of
6 was verified by GCMS comparison with the authentic sample.
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